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Multiple dosing, in classic, non-fractional PK can be implemented either by
piecewise solution of each dosing interval, where the initial value of each dosing
interval is the final value of the previous one plus the next dose, as follows:

Multiple dosing

The amount A(t) in a one-compartment fractional PK model after an IV bolus
dose is given by

The one-compartment model

Results

Superposition vs Piecewise solution

a) Multiple dosing profiles implemented by superposition (blue), are in agreement
with the constant infusion model (red), for various dosing frequencies, while for
the limit of a very frequent dosing interval the two solution practically overlap.

with A1(0)=Dose, where the operator CDα stands for the Caputo derivative of
order α, and has as solution the function,
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One of the problems of fractional calculus is the initialisation of fractional
differential equations because of the time memory effects, which may have
consequences in the implementation of multiple dosing systems. We investigate
the implementation of a multiple dosing scheme in a one compartment model,
with two methods, both valid in the classic, non-fractional case: (i) Piecewise
solution and (ii) using the superposition principle. We assess whether each of
these techniques works for fractional systems by comparing them to the limit
case of a one-compartment fractional model with constant infusion which has
an analytical solution.

Objective

Conclusions
• Multiple dosing in linear pharmacokinetic systems with fractional rates can be

implemented using the superposition principle exactly the same way as in ordinary
PK systems, while the piecewise solution method fails.

• An important implication of the presence of fractional kinetics is the lack of a
steady state and the infinite accumulation of drug, for a system with a constant
rate multiple dosing (or infusion).

where Eα,β(∙) is the Mittalg-Leffler (ML) function.
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The fractional one-compartment model with a constant infusion is given by
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Which can also be solved in terms of a ML function

)()( 102,011
α

α tkEtktA −⋅⋅=

Alternately, linear systems, can be solved by the superposition of several, time-
lagged, single dose solutions Ai(t) as follows:
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Both of these approaches give identical results in non-fractional PK, but the
question is whether any of these is appropriate for fractional kinetics given the
peculiarities of fractional differential equations regarding initial values.

To test whether the methods are applicable for fractional PK we compare the
multiple dosing implementations with the constant infusion. Regular multiple
dosing and constant infusion should give the same result in the case of very
frequent small doses.

For the constant infusion we set α=0.5, k01=100 and K10=1, while the dose is
varied with the dosing frequency to match the infusion rate as follows:
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b) A multiple dosing profile
implemented by piecewise solution
(green line) is different to the one
implemented by superposiition
(blue line), and of course does not
agree with the constant infusion
model (red line).

So in conclusion, superposition
works while piecewise solution
does not. The former is not
surprising since the models tested

Accumulation of drug

As already pictured above the solution of the constant rate infusion does not
reach the steady state k01/k10, instead it diverges. We can show analytically by
using Eq. 2, that the limit of A1(t) when t goes to infinity, is also infinite.

are linear and despite their fractional order, superposition principle still holds. 
The disadvantage of this method is that it is not applicable for nonlinear systems.
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Taking the limit as t→∞, we expand and keep only first term using the formula:
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The result is

for α<1, while replacing α=1, gives the usual steady state
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